
Programming Interface - 1 -

Programming Interface

Introduction

In this section, we describe how to use XLReporter’s programming interface.

Schedules in XLReporter consist of an Action (what to perform) and a Trigger (when to perform),

see the REPORT, Deploy Schedule Reports document for more details. Using the programming

interface, all the actions of the scheduler can also be triggered from a third-party application that

support VBA or .NET.

At runtime, the third-party application places the action into a processing queue and can either wait for

the action to be completed or continue. For example, a pushbutton on an HMI screen places the action

into the queue which processes in the background while the display continues refreshing. However,

there are times when the third-party needs to be certain that the action has completed, this scenario is

also catered for.

The processing queue is a FIFO (first in first out) of 256 actions.

Command line scripts

Reporting actions can be initiated from command line scripts using the application XLRrequest.exe as

follows:

InstallPath\XLRrequest.exe action

For example:

Update the template sheet in the workbook called Flow, use the following command line:

InstallPath\XLRrequest.exe “UpdateSheet ‘Flow.Template’”

Visual Basic and VBA

From a programming environment, actions are added using XLRrequest.dll (32 bit) and

XLRrequest64.dll (64 bit). This DLL provides the following three methods:

• XLRrequest Places the action in the queue.

• XLRqueue Places the action in the queue with monitoring enabled.

• XLRstate Monitors the action submitted with XLRqueue.

XLRrequest

This method is used if the caller does not need to the monitor the progress of the execution of the

action. The syntax is:

XLRrequest action

For example:

To update the Template sheet in the workbook called Flow, the following program could be used

starting with declarations:

For 32-bit applications:

Declare Function XLRrequest Lib "InstallPath\XLRrequest" (ByVal sAction As String) As Integer

Programming Interface - 2 -

For 64-bit applications:

Declare PtrSafe Function XLRrequest Lib "InstallPath\XLRrequest64" (ByVal sAction As String) As

Integer

In the above, InstallPath is the install path of XLReporter.

Now the method can be used:

Private Sub UpdateReport()

 Dim s as String

 s = "UpdateSheet ‘Flow.Template’”

 XLRrequest s

End Sub

In the above, the action is UpdateSheet which requires the parameter Flow.Template

(Workbook.Worksheet) which is enclosed in single quotes.

Multiple Actions

If multiple actions are executed and the requirement is that the processing of the actions starts when

the last action is added to the queue, add “-qo” to the end of every action except that last one.

For example:

Set the variables Start Date and End Date and then initiate the update of a monthly report.

 s = “Set ‘Start Date’ ‘2021-01-01’-qo”

 XLRrequest s

 s = “Set ‘End Date’ ‘2021-02-01’-qo”

 XLRrequest s

 s = “UpdateSheet ‘Monthly.Template’”

 XLRrequest s

Multiple commands can be initiated together. For instance, to update a sheet and then print the results

both commands can be sent to the queue, and they will be completed in that order.

Monitoring the Queue

There are times when it is desirable to monitor the queue to ensure that the action has executed without

errors before moving to the next step. In such cases, the action is issued with the XLRqueue function

and then monitored with the XLRstate function.

XLRqueue action

XLRstate error len

Where action is the action string, error is an error string and len is the length of the error string.

The return values from XLRstate are:

0 completed with no errors.

1 still pending.

3 completed with errors returned in error.

For example:

Update the template sheet in the workbook called Flow and print it if the update was successful. The

following program could be used starting with declarations:

Programming Interface - 3 -

For 32-bit applications:

Declare Function XLRrequest Lib "C:\XLReporter\XLRrequest" (ByVal sAction As String) As Integer

Declare Function XLRqueue Lib "C:\XLReporter\XLRrequest" (ByVal sAction As String) As Integer

Declare Function XLRstate Lib "C:\XLReporter\XLRrequest" (ByVal sErr As String, ByVal nLen As

Integer) As Integer

For 64-bit applications:

Declare PtrSafe Function XLRrequest Lib "C:\XLReporter\XLRrequest64" (ByVal sAction As String)

As Integer

Declare PtrSafe Function XLRqueue Lib "C:\XLReporter\XLRrequest64" (ByVal sAction As String) As

Integer

Declare PtrSafe Function XLRstate Lib "C:\XLReporter\XLRrequest64" (ByVal sErr As String, ByVal

nLen As Integer) As Integer

Now the methods can be used:

Private Sub UpdateReport

 Dim s as String

 Dim sErr as String * 255

 Dim nRet as Integer

 s = "UpdateSheet ‘Flow.Template’”

 XLRqueue s

 nRet = XLRstate(sErr, 255)

 While nRet = 1

 nRet = XLRstate(sErr, 255)

 DoEvents

 Wend

 if nRet = 3 then

 MsgBox sErr

 Exit Sub

 End If

 ‘ print the report

 s = "PrintSheet ‘Flow.Template’ ‘MyPrinter’”

 XLRrequest s

End Sub

Programming Interface - 4 -

Custom Category

Overview

Management connections in a template provide a rich set of features that extend the capability of a

workbook (see DESIGN, Data Management document). One category of Management connections is

Custom where users provide their own business logic in .NET classes.

An implementation of a custom category makes the business logic appear integrated into the product.

When a method needs to be invoked, the input cell range together with the user specified parameters

are passed to a .NET class method for processing which in turn returns the result for the report.

For example, the CT3log calculation for wastewater treatment is performed by taking the Temperature,

pH and Cl Residual and applying the values in a CT3log calculation. Because of the complexity of the

calculation, an efficient approach would be to send the values to a method in a .NET class and display

the return value. Since this must be done over each row in the report, support for sending and

receiving arrays is supported.

The parameter array passed to the method is determined from the range starting at AD36:AF36

going down until All the cells ate empty. The array results from the class are placed at AI36.

Implementation

There are two main steps in implementing a custom category

• Specifying a meta file which determines the user interface

• Providing a .NET class which contains the methods described in the meta file

Be aware that the performance of XLReporter can be affected by custom methods that take time to

process and so they should be designed to handle errors and process the request without any delays.

User Interface

The user interface presented in the Design Studio under the Manage tab in Data Connections is

described by a meta file provided by the developer. The format of the file is XML and is named

Categories_XXX.xml, where “XXX” is the category name. The file is installed in the root folder of the

installation (e.g., C:\XLReporter).

Before the meta file is created, consider the methods that will be provided and the parameters they will

require.

Programming Interface - 5 -

In the wastewater treatment example of the previous section, the user interface of the CT required for

3-log inactivation of G. lamblia from 4 parameters is shown. In this case, the meta file would contain:

<?xml version="1.0"?>

<MAN>

 <VERSION>

 <version>1.0</version>

 </VERSION>

 <CATEGORY>

 <display>Wastewater</display>

 <xla>xlrWastewater~Wastewater.cMain</xla>

 </CATEGORY>

 <Wastewater>

 <display>CT3log</display>

 <type>CT3log</type>

 <input>1</input>

 <inputtext>IDS_BASEDON</inputtext>

 <direction>2</direction>

 <target>1</target>

 <targettext>IDS_TARGET</targettext>

 </Wastewater>

 <CT3log>

 <dest></dest>

 <inputpar></inputpar>

 <valuetype>1</valuetype>

 <prompt>Disinfect. Type</prompt>

 <inputtype>30</inputtype>

 <value></value>

 <inputcol>0</inputcol>

 <reset>0</reset>

 </CT3log>

 <CT3log>

 <dest></dest>

 <inputpar></inputpar>

 <valuetype>1</valuetype>

 <prompt>Temperature</prompt>

 <inputtype>30</inputtype>

 <value></value>

 <inputcol>0</inputcol>

 <reset>0</reset>

 </CT3log>

 <CT3log>

 <dest></dest>

 <inputpar></inputpar>

 <valuetype>1</valuetype>

 <prompt>pH</prompt>

 <inputtype>30</inputtype>

 <value></value>

 <inputcol>0</inputcol>

 <reset>0</reset>

 </CT3log>

 <CT3log>

 <dest></dest>

 <inputpar></inputpar>

 <valuetype>1</valuetype>

 <prompt>Cl Residual</prompt>

 <inputtype>30</inputtype>

 <value></value>

 <inputcol>0</inputcol>

Programming Interface - 6 -

 <reset>0</reset>

 </CT3log>

</MAN>

The <CATEGORY> section

 <CATEGORY>

 <display>Wastewater</display>

 <xla>xlrWastewater~Wastewater.cMain</xla>

 </CATEGORY>

The section contains the Category text displayed to the user, the name of the .NET dll

(xlrWastewater), the namespace (Wastewater) and the class (cMain) in the namespace which provides

the methods.

Each method in the class is described in sections using the display text Wastewater

 <Wastewater>

 <display>CT3log</display>

 <type>CT3log</type>

 <input>1</input>

 <inputtext>IDS_BASEDON</inputtext>

 <direction>2</direction>

 <target>1</target>

 <targettext>IDS_TARGET</targettext>

 </Wastewater>

The section contains the <display> text which is displayed to the user and the method name <type>

method name used. The other settings in this section are used to define the Base settings displayed to

the user display and do not normally need changing.

Each method has parameters shown in the Settings grid of the user display. In the example, the

CT3log requires 4 parameters, the first described below:

 <CT3log>

 <dest></dest>

 <inputpar></inputpar>

 <valuetype>1</valuetype>

 <prompt>Disinfect. Type</prompt>

 <inputtype>30</inputtype>

 <value></value>

 <inputcol>0</inputcol>

 <reset>0</reset>

 </CT3log>

The section contains the <prompt> text which is displayed to the user. The <inputtype> describes the

mechanism used for the parameter as follows:

• 0 Textbox

• 20 Drop-down list (No manual text)

• 30 Cell picker (Supports manual text)

• 40 Drop-down list (Supports manual text)

If the <inputtype> is set to 20 or 40, <inputpar> should contain a comma separated list of items to

display from which the user can choose from.

The section contains <value> which is the default value displayed to the user.

The remaining settings in this section do not normally need changing.

Programming Interface - 7 -

Developing the .NET Classes

Please note that the following is documented in VB.net. C# is also supported.

The class library must be targeted to .NET Framework 4.5 or above. The library DLL must be copied

into the bin subfolder of the install folder (e.g., C:\XLReporter\bin).

Every method in the class is configured as:

Public Function methodName(ByVal oRange(,) As Object, ByVal oPar(,) As Object) As Object(,)

Where:

• methodName

The name of the method as specified in the custom categories XML file noted in the section

above e.g., CT3log

• oRange(,)

A two-dimensional array containing the range of data determined from the Base settings. The

array is in the format Row,Column.

• oPar(,)

A two-dimensional array containing every parameter from the Settings. The first element of

the array is the parameter value and the second is the parameter type.

If the parameter type is 0, the parameter value is a 0 based index of the Column in the oRange

array.

If the parameter type is 1, the parameter value is a treated as a static value.

Return Value

The method should always return a two-dimensional array in the format Row,Column that will be

written to the report according to the Placement setting.

Example

Consider a method to add values from two columns for each row of data. This method is contained in

a class named cMain in the CustomExample namespace within the class library xlrCustomExample.dll.

Meta File

The following meta file is created and saved as Categories_CustomExample.xml in the root of the

install folder.

<?xml version="1.0"?>

<MAN>

 <VERSION>

 <version>1.0</version>

 </VERSION>

 <CATEGORY>

 <display>Example</display>

 <xla>xlrCustomExample~CustomExample.cMain</xla>

 </CATEGORY>

 <Example>

 <display>Add Values</display>

 <type>addValues</type>

 <input>1</input>

 <inputtext>IDS_BASEDON</inputtext>

 <direction>2</direction>

 <target>1</target>

 <targettext>IDS_TARGET</targettext>

 </Example>

 <addValues>

Programming Interface - 8 -

 <dest></dest>

 <inputpar></inputpar>

 <valuetype>1</valuetype>

 <prompt>Value 1</prompt>

 <inputtype>30</inputtype>

 <value></value>

 <inputcol>0</inputcol>

 <reset>0</reset>

 </addValues>

 <addValues>

 <dest></dest>

 <inputpar></inputpar>

 <valuetype>1</valuetype>

 <prompt>Value 2</prompt>

 <inputtype>30</inputtype>

 <value></value>

 <inputcol>0</inputcol>

 <reset>0</reset>

 </addValues>

</MAN>

Note, this can be copied and pasted into a text editor like notepad as a starting point when creating a

meta file for custom management.

The meta file produces the following user interface:

Class Method
Public Function addValues(ByVal oRange(,) As Object, oPar(,) As Object) As Object(,)

Dim nEndRow As Integer = oRange.GetUpperBound(0)

Dim oRet(nEndRow, 0) As Object

Dim dTotal As Double

‘ cycle through each row of data in the range

For r As Integer = 0 to nEndRow

dTotal = 0

‘ cycle through the 2 parameters

For n As Short = 0 to 1

If oPar(n,1) = 0 Then

‘ parameter is an index, get value from range
dTotal += oRange(r, oPar(n,0))

Else

‘ parameter is a fixed value, use as is
dTotal += oPar(n,0)

End If

Next n

Programming Interface - 9 -

‘ assign total to output array

oRet(r,0) = dTotal

Next r

Return oRet

End Function

Template Configuration

Consider a template with the following data:

To use the custom Add Values to add Line 1 and Line 2 together, the management is configured as:

When the template is updated, the results are:

Programming Interface - 10 -

Programming Interface - 11 -

Information in this document is subject to change without notice. SmartSights, LLC assumes no

responsibility for any errors or omissions that may be in this document. No part of this document may be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without

the prior written permission of SmartSights, LLC.

Copyright 2000 - 2024, SmartSights, LLC. All rights reserved.

XLReporter® is a registered trademark of SmartSights, LLC.

Microsoft® and Microsoft Excel® are registered trademarks of Microsoft, Inc.

All registered names are the property of their respective owners.

	Programming Interface
	Introduction
	Command line scripts
	Visual Basic and VBA
	XLRrequest
	Multiple Actions

	Monitoring the Queue

	Custom Category
	Overview
	Implementation
	User Interface
	Developing the .NET Classes
	Return Value

	Example
	Meta File
	Class Method
	Template Configuration

